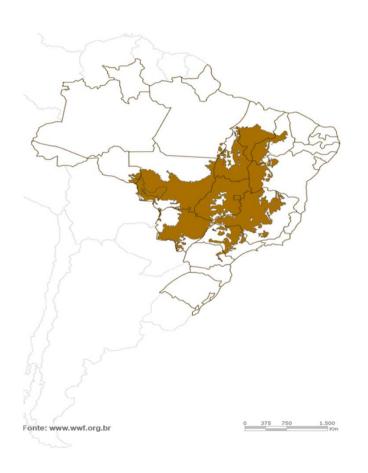
Performance and Correlation for Leaf Dry Matter Yield of Diverse Germplasm of *Panicum maximum* Jacq. under Two Levels of Soil Fertility in the Brazilian Cerrado


Mateus Santos; Carlos Pereira; Liana Jank; José Airton Nunes; Cacilda do Valle; Sanzio Barrios; Rosângela Simeão; Alexandre Romeiro; Manuel Macedo

March 26, 2019 Lake Buena Vista, FL, USA

Beef Cattle on Brazilian Cerrado

➤ Area: 205 million ha

- 50 million ha cultivated grasslands with more than 50% of beef cattle herd
- Weathered Tropical Soils Oxisols, Ultisols and Entisols
- Extensive systems are predominant, but things are changing!!!
 Integrated and intensive systems!

Panicum maximum on Brazilian Cerrado
Tropical apomictic autotetraploid (x = 8) perennial forage grass
- 16% of the seed market

High animal production - 1.200 kg of liveweight gain.ha⁻¹.y⁻¹

High demanding in technology - Lime, fertilizers, rotational stocking, farm management

Cerrado Soil vs Panicum maximum nutrition

Soil/ Plant	^a Chemical parameter								
	рН (Н ₂ О)	Ca+Mg cmol _c .dm ⁻³	K cmol _c .dm ⁻³	P mg.dm ⁻³	% Base saturation	% AI saturation			
Cerrado	4.5-5.2	0.2-0.7	0.02-0.4	0.5-3.4	5.9-43.9	16.4-85.9			
Panicum	>5.5	>2.0	>0.13	>4	>45	<20			

High input of fertilizers: lime, gypsum, potassium chloride, superphosphate

- Is there genotypes more efficient in using nutrients, i.e, lower losses with less nutrients?
- It would be desirable to reduce expending in fertilizers and to increase the profits of cattlemen

^aMartha Jr. et al. (2007) - Cerrado: uso eficiente de corretivos e fertilizantes em pastagens

Objectives

To estimate the losses of a low fertility soil on the performance of *P. maximum;*

To calculate the correlation between a low and a high fertility soil for diverse cultivars and breeding material.

Material and Methods

≻24 Genotypes (six cultivars, eight accessions and ten sexual plants)

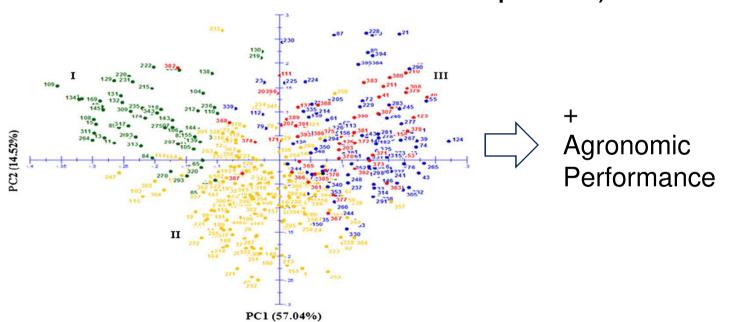
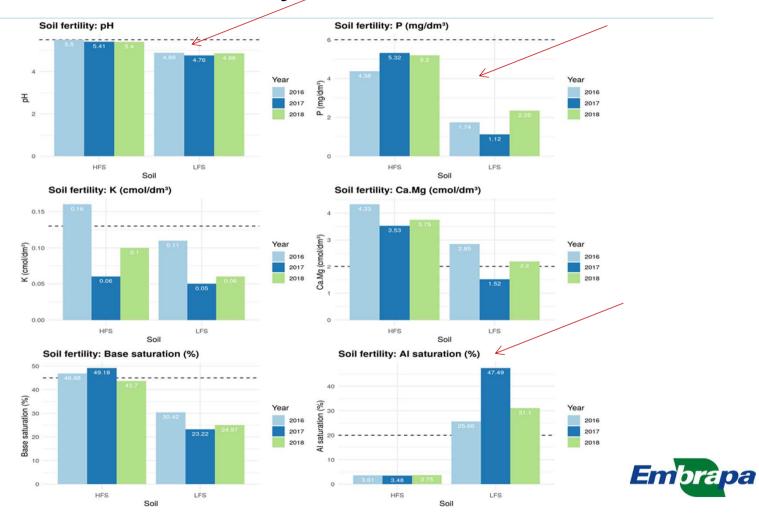


Fig. 4 Association among 396 Panicum maximum accessions revealed using principal components analysis (PCA) based on Jaccard's similarity coefficient calculated from 30 microsatellite loci. Samples are color-coded based on the STRUCTURE results

Tropical Plant Biol. (2011) 4:185-202


Material and Methods

 Soil – Haplic Ferralsoil – Clay soil – 55% of Clay – Campo Grande, MS, Brazil
Use of lime, gypsum, superphosphate (18%) and potassium chloride to generate two levels of fertility

Goal!!!

High Fertility Soil - 6 ppm of P₂O₅ and 45% of base saturation (Ca+Mg+K)
Low Fertility Soil – 2 ppm of P₂O₅ and 35% of base saturation

Levels of Soil Fertility

Evaluations

Low fertitily soil

High fertitily soil

- Design- RCB three replicates
- ➢ Plots 4.5 m²
- > Trait Leaf dry matter yield (kg.ha⁻¹.y⁻¹)
- Seven harvests from March 2017 to February 2018
- Nitrogen fertilization after each harvest in the rainy season - 150 kg N.ha⁻¹.y⁻¹
- Variance components based on REML and BLUPs for genotypes (Resende, 2016)

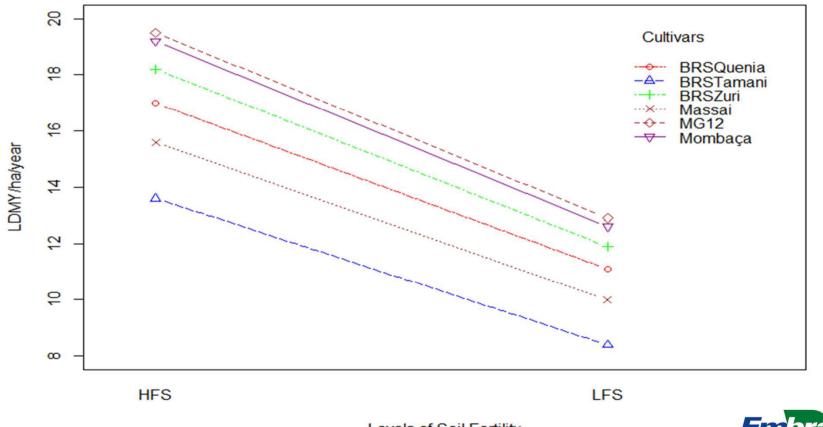
Heritability, accuracy and Mean BLUP (kg.ha⁻¹.y⁻¹)

Parameter	LRT Test		
Heritability	0.91**		
Accuracy	0.95		
Range	10,210 - 16,662		

Economic losses for a system of growing and finishing phases

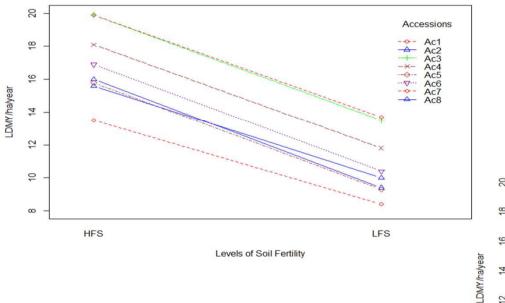
Forage yield and liveweight gain in kg.ha⁻¹

Soil	Forage yield.y ⁻¹	Forage yield.d ⁻¹	^a Forage Availability .d ⁻¹	^b Stocking rate	^c Liveweight gain.d ⁻¹	Liveweight gain.y ⁻¹	Profit in US\$.y ⁻¹
HFS (1)	16,275	44.59	22.30	3.38	2.03	740.95	889.14
LFS (2)	10,263	28.12	14.06	2.13	1.28	467.20	560.64
2 - 1	-6,012	-16.47	-8.24	-1.25	-0.75	-273.75	-328.50


Parameters: ^aForage availability=50%; ^bAnimal of 330 kg with 2% of LDMY consumption; ^cAverage daily liveweight gain=0.6.kg⁻¹; ^dUS\$ 1.2.kg⁻¹.

Average losses: -37%

Genotype by Soil Interaction


Interaction plot for Cultivars

Levels of Soil Fertility

Genotype by Soil Interaction

Interaction plot for Accessions

r_{GxSoil}= 0.91

Interaction plot for Sexual Plants

Concluding Remarks

- Low soil fertility caused high mean losses in P. maximum
- There were no cultivars or breeding material more tolerant to lower soil fertility

The use of genetic tolerance is a challenge

- Research in other areas should be encouraged
 - Example: Use of microrganisms?
 - > Tropical Grasslands (2006), 40, 94–101

Funding:

Collaborator:

Thanks!

